

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # D3D
Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch

<hr/>
Please consider siting my work if you find this library useful in your research :)

```bibtex
@article{zhong2020uncertainty,


title={Uncertainty-Aware Voxel based 3D Object Detection and Tracking with von-Mises Loss},
author={Zhong, Yuanxin and Zhu, Minghan and Peng, Huei},
journal={arXiv preprint arXiv:2011.02553},
year={2020}





}

## Features
- Unified data representation
- Support loading KITTI, Waymo, Nuscenes dataset
- Rotated 2D IoU, NMS with clear CUDA implementations
- Point Cloud Voxelization
- Visualization
- Benchmarking

## Package structure


	d3d.abstraction: Common interface definitions


	d3d.benchmark: Implementation of benchmarks


	d3d.box: Modules for bounding box related calculations


	d3d.dataset: Modules for dataset loading


	d3d.math: Implementation of some special math functions


	d3d.point: Modules for point array related components


	d3d.vis: Modules for visualizations


	d3d.voxel: Moduels for voxel related components




# Requirements

Installation requirements:
- python >= 3.6
- pytorch == 1.4
- scipy >= 1.4
- addict
- pillow

Build requirements:
- cython >= 0.29.16
- scikit-build
- setuptools-scm

Optional requirements:
- utm: support converting GPS coordinate to local frame
- pcl.py: support visualization in PCL
- matplotlib: support visualization in 2D figures
- waymo_open_dataset: support converting Waymo Dataset
- msgpack: support serialization/deserialization
- filterpy: support KF tracking

# Build


	create build environment in conda: conda create -f conda/env-dev.yaml


	build and install: python setup.py install


	build wheel: python setup.py bdist_wheel


	build in-place: python setup.py develop


	build debug: python setup.py develop –build-type Debug




## Build on cluster

Some tips about building the library in a cluster: The default behavior of building is using all the CPU cores, so if you find the compiler crashed during compilation, that’s usually due to insufficient memory. You can choose the number of parallel building by using -jN switch along with those building commands

## Wheels

Prebuilt wheels will be distributed in the future, through either release page or conda channel. Only source distribution will be uploaded to PyPI.

# Versioning
- Major version will be increased when big feature is added
- Minor version will be increased when API compatibility is broken
- Patch version will be increased when new feature is completed.

# Tips
- Current polygon intersecting algorithm is not very stable, so try to convert the input to double precision if you met error with the iou functions





            

          

      

      

    

  

    
      
          
            
  # TODOs
- [ ] Fix Nuscenes and Waymo image projection error (add motion compensation?)
- [ ] Fix Kitti detection output and add output for nuscenes
- [ ] port in https://github.com/poodarchu/Det3D
- [ ] Include visualization based on [pptk (nvidia/kaolin has example), open3d]
- [ ] Implement functions as torch script operator? First need to make output stored in function output

Some repos for reference:
- https://github.com/nicolas-chaulet/torch-points3d

# Minor enhancements


	[x] Make spconv available for pytorch 1.4+


	[ ] Include debugging and profiling tools: torchsnooper and snoop
- Improvement: implement torchsnooper for SparseConvTensor
- Improvement: let snoop output value if the tensor is a scalar


	[ ] Migrate all path processing to pathlib






            

          

      

      

    

  

    
      
          
            
  ## AV datasets

<!– TODO: create a table for all the dataset, marking availability –>


	[x] [KITTI](http://www.cvlibs.net/datasets/kitti/): Object only


	[x] [Waymo](https://waymo.com/open/data/): Added


	[x] [NuScenes](https://www.nuscenes.org/): Added


	[ ] [Lyft L5](https://level5.lyft.com/dataset/): To be added


	[ ] [ApolloScape](http://apolloscape.auto/): To be added


	[ ] [Argo.AI](https://www.argoverse.org/data.html#download-link): To be added


	[ ] [H3D](https://usa.honda-ri.com/H3D): To be added


	[ ] [KAIST](http://irap.kaist.ac.kr/dataset/): To be added, no label


	[ ] [IDD](http://idd.insaan.iiit.ac.in/): To be added


	[ ] [RobotCar](https://robotcar-dataset.robots.ox.ac.uk/): To be added, no label


	[ ] [A*3D](https://arxiv.org/pdf/1909.07541.pdf): To be added


	[ ] [WoodScape](https://github.com/valeoai/woodscape): To be added


	[ ] [MVSEC](https://daniilidis-group.github.io/mvsec/): To be added, no label


	[ ] [BLVD](https://github.com/VCCIV/BLVD): To be added


	[ ] [Pandaset](https://pandaset.org/): To be added


	[ ] [CADC](http://cadcd.uwaterloo.ca/) ([github](https://github.com/mpitropov/cadc_devkit)): To be added


	[ ] [KITTI-360](http://www.cvlibs.net/datasets/kitti-360/): To be added




## Datasets of other type
- [ ] [CityScape](https://www.cityscapes-dataset.com/):



	https://github.com/mcordts/cityscapesScripts








	[ ] [BDD](https://bdd-data.berkeley.edu/): To be added


	[ ] [SemanticKITTI](http://www.semantic-kitti.org/): To be added






            

          

      

      

    

  

    
      
          
            
  This folder is for some corner errors with reproduce data and script



            

          

      

      

    

  

    
      
          
            
  
Backward-cpp [![badge](https://img.shields.io/badge/conan.io-backward%2F1.3.0-green.svg?logo=data:image/png;base64%2CiVBORw0KGgoAAAANSUhEUgAAAA4AAAAOCAMAAAAolt3jAAAA1VBMVEUAAABhlctjlstkl8tlmMtlmMxlmcxmmcxnmsxpnMxpnM1qnc1sn85voM91oM11oc1xotB2oc56pNF6pNJ2ptJ8ptJ8ptN9ptN8p9N5qNJ9p9N9p9R8qtOBqdSAqtOAqtR%2BrNSCrNJ/rdWDrNWCsNWCsNaJs9eLs9iRvNuVvdyVv9yXwd2Zwt6axN6dxt%2Bfx%2BChyeGiyuGjyuCjyuGly%2BGlzOKmzOGozuKoz%2BKqz%2BOq0OOv1OWw1OWw1eWx1eWy1uay1%2Baz1%2Baz1%2Bez2Oe02Oe12ee22ujUGwH3AAAAAXRSTlMAQObYZgAAAAFiS0dEAIgFHUgAAAAJcEhZcwAACxMAAAsTAQCanBgAAAAHdElNRQfgBQkREyOxFIh/AAAAiklEQVQI12NgAAMbOwY4sLZ2NtQ1coVKWNvoc/Eq8XDr2wB5Ig62ekza9vaOqpK2TpoMzOxaFtwqZua2Bm4makIM7OzMAjoaCqYuxooSUqJALjs7o4yVpbowvzSUy87KqSwmxQfnsrPISyFzWeWAXCkpMaBVIC4bmCsOdgiUKwh3JojLgAQ4ZCE0AMm2D29tZwe6AAAAAElFTkSuQmCC)](http://www.conan.io/source/backward/1.3.0/Manu343726/testing) [![Build Status](https://travis-ci.org/bombela/backward-cpp.svg?branch=master)](https://travis-ci.org/bombela/backward-cpp)

Backward is a beautiful stack trace pretty printer for C++.

If you are bored to see this:

![default trace](doc/rude.png)

Backward will spice it up for you:

![pretty stackstrace](doc/pretty.png)

There is not much to say. Of course it will be able to display the code
snippets only if the source files are accessible (else see trace #4 in the
example).

All “Source” lines and code snippet prefixed by a pipe “|” are frames inline
the next frame.
You can see that for the trace #1 in the example, the function
you_shall_not_pass() was inlined in the function …read2::do_test() by the
compiler.

## Installation

#### Install backward.hpp

Backward is a header only library. So installing Backward is easy, simply drop
a copy of backward.hpp along with your other source files in your C++ project.
You can also use a git submodule or really any other way that best fits your
environment, as long as you can include backward.hpp.

#### Install backward.cpp

If you want Backward to automatically print a stack trace on most common fatal
errors (segfault, abort, un-handled exception…), simply add a copy of
backward.cpp to your project, and don’t forget to tell your build system.

The code in backward.cpp is trivial anyway, you can simply copy what it’s
doing at your convenience.

## Configuration & Dependencies

### Integration with CMake

If you are using CMake and want to use its configuration abilities to save
you the trouble, you can easily integrate Backward, depending on how you obtained
the library.

#### As a subdirectory:

In this case you have a subdirectory containing the whole repository of Backward
(eg.: using git-submodules), in this case you can do:

```
add_subdirectory(/path/to/backward-cpp)

This will add backward.cpp to your target
add_executable(mytarget mysource.cpp ${BACKWARD_ENABLE})

This will add libraries, definitions and include directories needed by backward
by setting each property on the target.
add_backward(mytarget)
```

#### Modifying CMAKE_MODULE_PATH

In this case you can have Backward installed as a subdirectory:

```
list(APPEND CMAKE_MODULE_PATH /path/to/backward-cpp)
find_package(Backward)

This will add libraries, definitions and include directories needed by backward
through an IMPORTED target.
target_link_libraries(mytarget PUBLIC Backward::Backward)
```

Notice that this is equivalent to using the the approach that uses add_subdirectory(),
however it uses cmake’s [imported target](https://cmake.org/Wiki/CMake/Tutorials/Exporting_and_Importing_Targets) mechanism.

#### Installation through a regular package manager

In this case you have obtained Backward through a package manager.

Packages currently available:
- [conda-forge](https://anaconda.org/conda-forge/backward-cpp)

```
find_package(Backward)

This will add libraries, definitions and include directories needed by backward
through an IMPORTED target.
target_link_libraries(mytarget PUBLIC Backward::Backward)
```

### Compile with debug info

You need to compile your project with generation of debug symbols enabled,
usually -g with clang++ and g++.

Note that you can use -g with any level of optimization, with modern debug
information encoding like DWARF, it only takes space in the binary (it’s not
loaded in memory until your debugger or Backward makes use of it, don’t worry),
and it doesn’t impact the code generation (at least on GNU/Linux x86_64 for
what I know).

If you are missing debug information, the stack trace will lack details about
your sources.

### Libraries to read the debug info

Backward support pretty printed stack traces on GNU/Linux only, it will compile
fine under other platforms but will not do anything.  Pull requests are
welcome :)

Also, by default you will get a really basic stack trace, based on the
backtrace_symbols API:

![default trace](doc/nice.png)

You will need to install some dependencies to get the ultimate stack trace. Two
libraries are currently supported, the only difference is which one is the
easiest for you to install, so pick your poison:

#### libbfd from the [GNU/binutils](http://www.gnu.org/software/binutils/)


apt-get install binutils-dev (or equivalent)




And do not forget to link with the lib: g++/clang++ -lbfd -ldl …

This library requires dynamic loading. Which is provided by the library dl.
Hence why we also link with -ldl.

Then define the following before every inclusion of backward.hpp (don’t
forget to update backward.cpp as well):


#define BACKWARD_HAS_BFD 1




#### libdw from the [elfutils](https://fedorahosted.org/elfutils/)


apt-get install libdw-dev (or equivalent)




And do not forget to link with the lib and inform Backward to use it:


#define BACKWARD_HAS_DW 1




Of course you can simply add the define (-DBACKWARD_HAS_…=1) and the
linkage details in your build system and even auto-detect which library is
installed, it’s up to you.

#### [libdwarf](https://sourceforge.net/projects/libdwarf/) and [libelf](http://www.mr511.de/software/english.html)


apt-get install libdwarf-dev (or equivalent)




And do not forget to link with the lib and inform Backward to use it:


#define BACKWARD_HAS_DWARF 1




There are several alternative implementations of libdwarf and libelf that
are API compatible so it’s possible, although it hasn’t been tested, to
replace the ones used when developing backward (in bold, below):


	_libelf_ by [Michael “Tired” Riepe](http://www.mr511.de/software/english.html)


	_libdwarf_ by [David Anderson](https://www.prevanders.net/dwarf.html)


	libelf from [elfutils](https://fedorahosted.org/elfutils/)


	libelf and libdwarf from FreeBSD’s [ELF Tool Chain](https://sourceforge.net/p/elftoolchain/wiki/Home/) project




Of course you can simply add the define (-DBACKWARD_HAS_…=1) and the
linkage details in your build system and even auto-detect which library is
installed, it’s up to you.

That’s it, you are all set, you should be getting nice stack traces like the
one at the beginning of this document.

## API

If you don’t want to limit yourself to the defaults offered by backward.cpp,
and you want to take some random stack traces for whatever reason and pretty
print them the way you love or you decide to send them all to your buddies over
the Internet, you will appreciate the simplicity of Backward’s API.

### Stacktrace

The StackTrace class lets you take a “snapshot” of the current stack.
You can use it like this:

`c++
using namespace backward;
StackTrace st; st.load_here(32);
Printer p; p.print(st);
`

The public methods are:

```c++
class StackTrace { public:

// Take a snapshot of the current stack, with at most “trace_cnt_max”
// traces in it. The first trace is the most recent (ie the current
// frame). You can also provide a trace address to load_from() assuming
// the address is a valid stack frame (useful for signal handling traces).
// Both function return size().
size_t load_here(size_t trace_cnt_max)
size_t load_from(void* address, size_t trace_cnt_max)

// The number of traces loaded. This can be less than “trace_cnt_max”.
size_t size() const

// A unique id for the thread in which the trace was taken. The value
// 0 means the stack trace comes from the main thread.
size_t thread_id() const

// Retrieve a trace by index. 0 is the most recent trace, size()-1 is
// the oldest one.
Trace operator[](size_t trace_idx)

};

TraceResolver

The TraceResolver does the heavy lifting, and intends to transform a simple
Trace from its address into a fully detailed ResolvedTrace with the
filename of the source, line numbers, inlined functions and so on.

You can use it like this:

```c++
using namespace backward;
StackTrace st; st.load_here(32);

TraceResolver tr; tr.load_stacktrace(st);
for (size_t i = 0; i < st.size(); ++i) {


ResolvedTrace trace = tr.resolve(st[i]);
std::cout << “#” << i


<< ” ” << trace.object_filename
<< ” ” << trace.object_function
<< ” [” << trace.addr << “]”




<< std::endl;







}

The public methods are:

```c++
class TraceResolver { public:

// Pre-load whatever is necessary from the stack trace.
template <class ST>

void load_stacktrace(ST&)

// Resolve a trace. It takes a ResolvedTrace, because a Trace is
// implicitly convertible to it.
ResolvedTrace resolve(ResolvedTrace t)

};

SnippetFactory

The SnippetFactory is a simple helper class to automatically load and cache
source files in order to extract code snippets.

```c++
class SnippetFactory { public:


// A snippet is a list of line numbers and line contents.
typedef std::vector<std::pair<size_t, std::string> > lines_t;

// Return a snippet starting at line_start with up to context_size lines.
lines_t get_snippet(const std::string& filename,


size_t line_start, size_t context_size)




// Return a combined snippet from two different locations and combine them.
// context_size / 2 lines will be extracted from each location.
lines_t get_combined_snippet(


const std::string& filename_a, size_t line_a,
const std::string& filename_b, size_t line_b,
size_t context_size)




// Tries to return a unified snippet if the two locations from the same
// file are close enough to fit inside one context_size, else returns
// the equivalent of get_combined_snippet().
lines_t get_coalesced_snippet(const std::string& filename,


size_t line_a, size_t line_b, size_t context_size)







```

Printer

A simpler way to pretty print a stack trace to the terminal. It will
automatically resolve the traces for you:

`c++
using namespace backward;
StackTrace st; st.load_here(32);
Printer p;
p.object = true;
p.color_mode = ColorMode::always;
p.address = true;
p.print(st, stderr);
`

You can set a few options:

```c++
class Printer { public:


// Print a little snippet of code if possible.
bool snippet = true;

// Colorize the trace
//  - ColorMode::automatic: Activate colors if possible. For example, when using a TTY on linux.
//  - ColorMode::always: Always use colors.
//  - ColorMode::never: Never use colors.
bool color_mode = ColorMode::automatic;

// Add the addresses of every source location to the trace.
bool address = false;

// Even if there is a source location, also prints the object
// from where the trace came from.
bool object = false;

// Resolve and print a stack trace to the given C FILE* object.
// On linux, if the FILE* object is attached to a TTY,
// color will be used if color_mode is set to automatic.
template <typename StackTrace>


FILE* print(StackTrace& st, FILE* fp = stderr);




// Resolve and print a stack trace to the given std::ostream object.
// Color will only be used if color_mode is set to always.
template <typename ST>


std::ostream& print(ST& st, std::ostream& os);







```

SignalHandling

A simple helper class that registers for you the most common signals and other
callbacks to segfault, hardware exception, un-handled exception etc.

backward.cpp simply uses it like that:

`c++
backward::SignalHandling sh;
`

Creating the object registers all the different signals and hooks. Destroying
this object doesn’t do anything. It exposes only one method:

`c++
bool loaded() const // true if loaded with success
`

Trace object

To keep the memory footprint of a loaded StackTrace on the low-side, there a
hierarchy of trace object, from a minimal Trace `to a `ResolvedTrace.

Simple trace

```c++
struct Trace {


void*  addr; // address of the trace
size_t idx;  // its index (0 == most recent)







};

#### Resolved trace

A ResolvedTrace should contains a maximum of details about the location of
the trace in the source code. Note that not all fields might be set.

```c++
struct ResolvedTrace: public Trace {

	struct SourceLoc {
	std::string function;
std::string filename;
size_t line;
size_t col;

};

// In which binary object this trace is located.
std::string object_filename;

// The function in the object that contains the trace. This is not the same
// as source.function which can be an function inlined in object_function.
std::string object_function;

// The source location of this trace. It is possible for filename to be
// empty and for line/col to be invalid (value 0) if this information
// couldn’t be deduced, for example if there is no debug information in the
// binary object.
SourceLoc source;

// An optional list of “inliners”. All of these sources locations where
// inlined in the source location of the trace (the attribute right above).
// This is especially useful when you compile with optimizations turned on.
typedef std::vector<SourceLoc> source_locs_t;
source_locs_t inliners;

};

Contact and copyright

François-Xavier Bourlet <bombela@gmail.com>

Copyright 2013-2017 Google Inc. All Rights Reserved.
MIT License.

Disclaimer

Although this project is owned by Google Inc. this is not a Google supported or
affiliated project.

 # DGAL
Differentiable Geometry Algorithms Library

 [![Build Status](https://travis-ci.org/Tessil/robin-map.svg?branch=master)](https://travis-ci.org/Tessil/robin-map) [![Build status](https://ci.appveyor.com/api/projects/status/lo79n4ya4nta79q4/branch/master?svg=true)](https://ci.appveyor.com/project/Tessil/robin-map/branch/master)

A C++ implementation of a fast hash map and hash set using robin hood hashing

The robin-map library is a C++ implementation of a fast hash map and hash set using open-addressing and linear robin hood hashing with backward shift deletion to resolve collisions.

Four classes are provided: tsl::robin_map, tsl::robin_set, tsl::robin_pg_map and tsl::robin_pg_set. The first two are faster and use a power of two growth policy, the last two use a prime growth policy instead and are able to cope better with a poor hash function. Use the prime version if there is a chance of repeating patterns in the lower bits of your hash (e.g. you are storing pointers with an identity hash function). See [GrowthPolicy](#growth-policy) for details.

A benchmark of tsl::robin_map against other hash maps may be found [here](https://tessil.github.io/2016/08/29/benchmark-hopscotch-map.html). This page also gives some advices on which hash table structure you should try for your use case (useful if you are a bit lost with the multiple hash tables implementations in the tsl namespace).

Key features

	Header-only library, just add the include directory to your include path and you are ready to go. If you use CMake, you can also use the tsl::robin_map exported target from the CMakeLists.txt.

	Fast hash table, check the [benchmark](https://tessil.github.io/2016/08/29/benchmark-hopscotch-map.html) for some numbers.

	Support for move-only and non-default constructible key/value.

	Support for heterogeneous lookups allowing the usage of find with a type different than Key (e.g. if you have a map that uses std::unique_ptr<foo> as key, you can use a foo* or a std::uintptr_t as key parameter to find without constructing a std::unique_ptr<foo>, see [example](#heterogeneous-lookups)).

	No need to reserve any sentinel value from the keys.

	Possibility to store the hash value alongside the stored key-value for faster rehash and lookup if the hash or the key equal functions are expensive to compute. Note that hash may be stored even if not asked explicitly when the library can detect that it will have no impact on the size of the structure in memory due to alignment. See the [StoreHash](https://tessil.github.io/robin-map/classtsl_1_1robin__map.html#details) template parameter for details.

	If the hash is known before a lookup, it is possible to pass it as parameter to speed-up the lookup (see precalculated_hash parameter in [API](https://tessil.github.io/robin-map/classtsl_1_1robin__map.html#a35021b11aabb61820236692a54b3a0f8)).

	The library can be used with exceptions disabled (through -fno-exceptions option on Clang and GCC, without an /EH option on MSVC or simply by defining TSL_NO_EXCEPTIONS). std::terminate is used in replacement of the throw instruction when exceptions are disabled.

	API closely similar to std::unordered_map and std::unordered_set.

Differences compared to std::unordered_map

tsl::robin_map tries to have an interface similar to std::unordered_map, but some differences exist.
- The strong exception guarantee only holds if the following statement is true std::is_nothrow_swappable<value_type>::value && std::is_nothrow_move_constructible<value_type>::value (where value_type is Key for tsl::robin_set and std::pair<Key, T> for tsl::robin_map). Otherwise if an exception is thrown during the swap or the move, the structure may end up in a undefined state. Note that per the standard, a value_type with a noexcept copy constructor and no move constructor also satisfies this condition and will thus guarantee the strong exception guarantee for the structure (see [API](https://tessil.github.io/robin-map/classtsl_1_1robin__map.html#details) for details).
- The type Key, and also T in case of map, must be swappable. They must also be copy and/or move constructible.
- Iterator invalidation doesn’t behave in the same way, any operation modifying the hash table invalidate them (see [API](https://tessil.github.io/robin-map/classtsl_1_1robin__map.html#details) for details).
- References and pointers to keys or values in the map are invalidated in the same way as iterators to these keys-values.
- For iterators of tsl::robin_map, operator*() and operator->() return a reference and a pointer to const std::pair<Key, T> instead of std::pair<const Key, T> making the value T not modifiable. To modify the value you have to call the value() method of the iterator to get a mutable reference. Example:
```c++
tsl::robin_map<int, int> map = {{1, 1}, {2, 1}, {3, 1}};
for(auto it = map.begin(); it != map.end(); ++it) {


//it->second = 2; // Illegal
it.value() = 2; // Ok





}


	No support for some buckets related methods (like bucket_size, bucket, …).




These differences also apply between std::unordered_set and tsl::robin_set.

Thread-safety guarantees are the same as std::unordered_map/set (i.e. possible to have multiple readers with no writer).

### Growth policy

The library supports multiple growth policies through the GrowthPolicy template parameter. Three policies are provided by the library but you can easily implement your own if needed.


	[tsl::rh::power_of_two_growth_policy.](https://tessil.github.io/robin-map/classtsl_1_1rh_1_1power__of__two__growth__policy.html) Default policy used by tsl::robin_map/set. This policy keeps the size of the bucket array of the hash table to a power of two. This constraint allows the policy to avoid the usage of the slow modulo operation to map a hash to a bucket, instead of <code>hash % 2<sup>n</sup></code>, it uses <code>hash & (2<sup>n</sup> - 1)</code> (see [fast modulo](https://en.wikipedia.org/wiki/Modulo_operation#Performance_issues)). Fast but this may cause a lot of collisions with a poor hash function as the modulo with a power of two only masks the most significant bits in the end.


	[tsl::rh::prime_growth_policy.](https://tessil.github.io/robin-map/classtsl_1_1rh_1_1prime__growth__policy.html) Default policy used by tsl::robin_pg_map/set. The policy keeps the size of the bucket array of the hash table to a prime number. When mapping a hash to a bucket, using a prime number as modulo will result in a better distribution of the hash across the buckets even with a poor hash function. To allow the compiler to optimize the modulo operation, the policy use a lookup table with constant primes modulos (see [API](https://tessil.github.io/robin-map/classtsl_1_1rh_1_1prime__growth__policy.html#details) for details). Slower than tsl::rh::power_of_two_growth_policy but more secure.


	[tsl::rh::mod_growth_policy.](https://tessil.github.io/robin-map/classtsl_1_1rh_1_1mod__growth__policy.html) The policy grows the map by a customizable growth factor passed in parameter. It then just use the modulo operator to map a hash to a bucket. Slower but more flexible.




To implement your own policy, you have to implement the following interface.

```c++
struct custom_policy {

// Called on hash table construction and rehash, min_bucket_count_in_out is the minimum buckets
// that the hash table needs. The policy can change it to a higher number of buckets if needed
// and the hash table will use this value as bucket count. If 0 bucket is asked, then the value
// must stay at 0.
explicit custom_policy(std::size_t& min_bucket_count_in_out);

// Return the bucket [0, bucket_count()) to which the hash belongs.
// If bucket_count() is 0, it must always return 0.
std::size_t bucket_for_hash(std::size_t hash) const noexcept;

// Return the number of buckets that should be used on next growth
std::size_t next_bucket_count() const;

// Maximum number of buckets supported by the policy
std::size_t max_bucket_count() const;

// Reset the growth policy as if the policy was created with a bucket count of 0.
// After a clear, the policy must always return 0 when bucket_for_hash() is called.
void clear() noexcept;

}

Installation

To use robin-map, just add the include directory to your include path. It is a header-only library.

If you use CMake, you can also use the tsl::robin_map exported target from the CMakeLists.txt with target_link_libraries.
`cmake
Example where the robin-map project is stored in a third-party directory
add_subdirectory(third-party/robin-map)
target_link_libraries(your_target PRIVATE tsl::robin_map)
`

If the project has been installed through make install, you can also use find_package(tsl-robin-map REQUIRED) instead of add_subdirectory.

The library is available in [vcpkg](https://github.com/Microsoft/vcpkg/tree/master/ports/robin-map) and [conan](https://bintray.com/tessil/tsl/tsl-robin-map%3Atessil). It’s also present in [Debian](https://packages.debian.org/buster/robin-map-dev), [Ubuntu](https://packages.ubuntu.com/disco/robin-map-dev) and [Fedora](https://apps.fedoraproject.org/packages/robin-map-devel) package repositories.

The code should work with any C++11 standard-compliant compiler and has been tested with GCC 4.8.4, Clang 3.5.0 and Visual Studio 2015.

To run the tests you will need the Boost Test library and CMake.

`bash
git clone https://github.com/Tessil/robin-map.git
cd robin-map/tests
mkdir build
cd build
cmake ..
cmake --build .
./tsl_robin_map_tests
`

Usage

The API can be found [here](https://tessil.github.io/robin-map/).

All methods are not documented yet, but they replicate the behavior of the ones in std::unordered_map and std::unordered_set, except if specified otherwise.

Example

```c++
#include <cstdint>
#include <iostream>
#include <string>
#include <tsl/robin_map.h>
#include <tsl/robin_set.h>


	int main() {
	tsl::robin_map<std::string, int> map = {{“a”, 1}, {“b”, 2}};
map[“c”] = 3;
map[“d”] = 4;

map.insert({“e”, 5});
map.erase(“b”);


	for(auto it = map.begin(); it != map.end(); ++it) {
	//it->second += 2; // Not valid.
it.value() += 2;





}

// {d, 6} {a, 3} {e, 7} {c, 5}
for(const auto& key_value : map) {


std::cout << “{” << key_value.first << “, ” << key_value.second << “}” << std::endl;




}


	if(map.find(“a”) != map.end()) {
	std::cout << “Found "a".” << std::endl;





}

const std::size_t precalculated_hash = std::hash<std::string>()(“a”);
// If we already know the hash beforehand, we can pass it in parameter to speed-up lookups.
if(map.find(“a”, precalculated_hash) != map.end()) {


std::cout << “Found "a" with hash ” << precalculated_hash << “.” << std::endl;




}


	/*
	
	Calculating the hash and comparing two std::string may be slow.


	We can store the hash of each std::string in the hash map to make


	the inserts and lookups faster by setting StoreHash to true.




*/



	tsl::robin_map<std::string, int, std::hash<std::string>,
	std::equal_to<std::string>,
std::allocator<std::pair<std::string, int>>,
true> map2;





map2[“a”] = 1;
map2[“b”] = 2;

// {a, 1} {b, 2}
for(const auto& key_value : map2) {


std::cout << “{” << key_value.first << “, ” << key_value.second << “}” << std::endl;




}

tsl::robin_set<int> set;
set.insert({1, 9, 0});
set.insert({2, -1, 9});

// {0} {1} {2} {9} {-1}
for(const auto& key : set) {


std::cout << “{” << key << “}” << std::endl;




}








}

#### Heterogeneous lookups

Heterogeneous overloads allow the usage of other types than Key for lookup and erase operations as long as the used types are hashable and comparable to Key.

To activate the heterogeneous overloads in tsl::robin_map/set, the qualified-id KeyEqual::is_transparent must be valid. It works the same way as for [std::map::find](http://en.cppreference.com/w/cpp/container/map/find). You can either use [std::equal_to<>](http://en.cppreference.com/w/cpp/utility/functional/equal_to_void) or define your own function object.

Both KeyEqual and Hash will need to be able to deal with the different types.

```c++
#include <functional>
#include <iostream>
#include <string>
#include <tsl/robin_map.h>

	struct employee {
	employee(int id, std::string name) : m_id(id), m_name(std::move(name)) {
}

// Either we include the comparators in the class and we use std::equal_to<>…
friend bool operator==(const employee& empl, int empl_id) {

return empl.m_id == empl_id;

}

	friend bool operator==(int empl_id, const employee& empl) {
	return empl_id == empl.m_id;

}

	friend bool operator==(const employee& empl1, const employee& empl2) {
	return empl1.m_id == empl2.m_id;

}

int m_id;
std::string m_name;

};

// … or we implement a separate class to compare employees.
struct equal_employee {

using is_transparent = void;

	bool operator()(const employee& empl, int empl_id) const {
	return empl.m_id == empl_id;

}

	bool operator()(int empl_id, const employee& empl) const {
	return empl_id == empl.m_id;

}

	bool operator()(const employee& empl1, const employee& empl2) const {
	return empl1.m_id == empl2.m_id;

}

};

	struct hash_employee {
	
	std::size_t operator()(const employee& empl) const {
	return std::hash<int>()(empl.m_id);

}

	std::size_t operator()(int id) const {
	return std::hash<int>()(id);

}

};

	int main() {
	// Use std::equal_to<> which will automatically deduce and forward the parameters
tsl::robin_map<employee, int, hash_employee, std::equal_to<>> map;
map.insert({employee(1, “John Doe”), 2001});
map.insert({employee(2, “Jane Doe”), 2002});
map.insert({employee(3, “John Smith”), 2003});

// John Smith 2003
auto it = map.find(3);
if(it != map.end()) {

std::cout << it->first.m_name << ” ” << it->second << std::endl;

}

map.erase(1);

// Use a custom KeyEqual which has an is_transparent member type
tsl::robin_map<employee, int, hash_employee, equal_employee> map2;
map2.insert({employee(4, “Johnny Doe”), 2004});

// 2004
std::cout << map2.at(4) << std::endl;

}

License

The code is licensed under the MIT license, see the [LICENSE file](LICENSE) for details.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

